1,072 research outputs found

    Conductivity of epitaxial and CVD graphene with correlated line defects

    Full text link
    Transport properties of single-layer graphene with correlated one-dimensional defects are studied using the time-dependent real-space Kubo-Greenwood formalism. Such defects are present in epitaxial graphene, comprising atomic terraces and steps due to the substrate morphology, and in polycrystalline chemically-vapor-deposited (CVD) graphene due to the grain boundaries, composed of a periodic array of dislocations, or quasi-periodic nanoripples originated from the metal substrate. The extended line defects are described by the long-range Lorentzian-type scattering potential. The dc conductivity is calculated numerically for different cases of distribution of line defects. This includes a random (uncorrelated) and a correlated distribution with a prevailing direction in the orientation of lines. The anisotropy of the conductivity along and across the line defects is revealed, which agrees with experimental measurements for epitaxial graphene grown on SiC. We performed a detailed study of the conductivity for different defect correlations, introducing the correlation angle alpha_max (i.e. the maximum possible angle between any two lines). We find that for a given electron density, the relative enhancement of the conductivity for the case of fully correlated line defects in comparison to the case of uncorrelated ones is larger for a higher defect density. Finally, we study the conductivity of realistic samples where both extended line defects as well as point-like scatterers such as adatoms and charged impurities are presented.Comment: 8 pages, 7 figure

    Influence of correlated impurities on conductivity of graphene sheets: Time-dependent real-space Kubo approach

    Full text link
    Exact numerical calculations of the conductivity of graphene sheets with random and correlated distributions of disorders have been performed using the time-dependent real-space Kubo formalism. The disorder was modeled by the long-range Gaussian potential describing screened charged impurities and by the short-range potential describing neutral adatoms both in the weak and strong scattering regime. Our central result is that correlation in the spatial distribution for the strong short-range scatterers and for the long-range Gaussian potential do not lead to any enhancement of the conductivity in comparison to the uncorrelated case. Our results strongly indicate that the temperature enhancement of the conductivity reported in the recent study (Yan and Fuhrer, Phys. Rev. Lett. 107, 206601 (2011)) and attributed to the effect of dopant correlations was most likely caused by other factors not related to the correlations in the scattering potential.Comment: 14 pages, 10 figure

    Diffusivities and kinetics of short-range and long-range orderings in Ni-Fe permalloys

    Full text link
    The microscopic model of atomic diffusion is considered to describe the short-range order relaxation kinetics within the f.c.c.-Ni-Fe Permalloys. The model takes into account both the discrete and anisotropic characters of atomic jumps within the long-range field of concentration heterogeneities of the interacting atoms. The diffusion coefficients and activation energies for the disordered Ni-Fe permalloy are estimated with the evaluated probabilities of atomic jumps. As shown, the increasing of a temperature with a fixed composition influences on the 'potential' field of interatomic interaction ambiguously: the field 'potential' increases for defined coordination shells and decreases for some of other ones. Although the temperature increasing promotes the increasing of any atomic-probabilities jumps generally, but decreasing of the action of 'potential' field generated by the atoms of defined element and caused by its concentration heterogeneities onto the distant sites results in increasing of the atomic-jumps' probabilities of just this element, first of all, into the sites, which are more distant from the 'source' of heterogeneity. Within the framework of the static concentration waves' method along with the self-consistent field approximation, the Onsager-type kinetics equation is obtained to describe the long-range order relaxation by the L12-type superstructure. To calculate diffusivities for the ordered Ni3Fe permalloy, the independent, diffraction experimental data of the long-range order parameter relaxation are used. Theoretical curves of the long-range order time evolution for the non-stoichiometric f.c.c.-Ni-Fe permalloys are plotted. Decreasing of the concentration of alloying element results in decelerating of the long-range order parameter change and in increasing of its relaxation time
    corecore